Search results
Results from the WOW.Com Content Network
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...
Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A. ... Code of Conduct;
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The 2002 record for digits of π, 1,241,100,000,000, was obtained by Yasumasa Kanada of Tokyo University. The calculation was performed on a 64-node Hitachi supercomputer with 1 terabyte of main memory, performing 2 trillion operations per second. The following two equations were both used:
The same approach can be used to calculate digits of the binary expansion of ln(2) starting from an arbitrary nth position. The number of terms in the "head" sum increases linearly with n , but the complexity of each term only increases with the logarithm of n if an efficient method of modular exponentiation is used.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
One important application is verifying computations of all digits of pi performed by other means. Rather than having to compute all of the digits twice by two separate algorithms to ensure that a computation is correct, the final digits of a very long all-digits computation can be verified by the much faster Bellard's formula. [3] Formula: