enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    Most steady-flow devices operate under adiabatic conditions, and the ideal process for these devices is the isentropic process. The parameter that describes how efficiently a device approximates a corresponding isentropic device is called isentropic or adiabatic efficiency. [12] Isentropic efficiency of turbines:

  3. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  4. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    Engineers classify this type of flow as an isentropic flow of fluids. Isentropic is the combination of the Greek word "iso" (which means - same) and entropy. When the change in flow variables is small and gradual, isentropic flows occur. The generation of sound waves is an isentropic process.

  5. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    Process 3–4: Isentropic expansion: The dry saturated vapour expands through a turbine, generating power. This decreases the temperature and pressure of the vapour, and some condensation may occur. The output in this process can be easily calculated using the chart or tables noted above. Process 4–1: Constant pressure heat rejection in condenser

  6. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades. Due to the change in velocities there is a ...

  7. Kantrowitz limit - Wikipedia

    en.wikipedia.org/wiki/Kantrowitz_limit

    If a near supersonic flow experiences an area contraction, the velocity of the flow will decrease until it reaches the local speed of sound, and the flow will be choked. This is the principle behind the Kantrowitz limit: it is the maximum amount of contraction a flow can experience before the flow chokes, and the flow speed can no longer be ...

  8. Otto cycle - Wikipedia

    en.wikipedia.org/wiki/Otto_cycle

    Process 3–4 is an adiabatic (isentropic) expansion (power stroke). Process 4–1 completes the cycle by a constant-volume process in which heat is rejected from the air while the piston is at bottom dead center. Process 1–0 the mass of air is released to the atmosphere in a constant pressure process.

  9. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    isobaric process – the compressed air then passes through a combustion chamber, where fuel is burned, heating that air—a constant-pressure process, since the chamber is open to flow in and out. isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines).