Search results
Results from the WOW.Com Content Network
While there are many abiotic sources and sinks for O 2, the presence of the profuse concentration of free oxygen in modern Earth's atmosphere and ocean is attributed to O 2 production from the biological process of oxygenic photosynthesis in conjunction with a biological sink known as the biological pump and a geologic process of carbon burial involving plate tectonics.
Photosynthetic prokaryotic organisms that produced O 2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago. The oxygen cyanobacteria produced would have been rapidly removed from the oceans by weathering of reducing minerals, [citation needed] most notably ferrous ...
Oxygen is the third most abundant chemical element in the universe, after hydrogen and helium. [68] About 0.9% of the Sun's mass is oxygen. [19] Oxygen constitutes 49.2% of the Earth's crust by mass [69] as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust.
Source: [38] The division of the atmosphere into layers mostly by reference to temperature is discussed above. ... The amount of oxygen in the atmosphere has ...
The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, or Oxygen Crisis, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. [2]
The atmosphere of Earth is composed of nitrogen (78%), oxygen (21%), argon (0.9%), carbon dioxide (0.04%) and trace gases. [2] Most organisms use oxygen for respiration ; lightning and bacteria perform nitrogen fixation which produces ammonia that is used to make nucleotides and amino acids ; plants , algae , and cyanobacteria use carbon ...
Trace gases are gases that are present in small amounts within an environment such as a planet's atmosphere.Trace gases in Earth's atmosphere are gases other than nitrogen (78.1%), oxygen (20.9%), and argon (0.934%) which, in combination, make up 99.934% of its atmosphere (not including water vapor).
Oxygenic photosynthesis is the main source of oxygen in the Earth's atmosphere, and its earliest appearance is sometimes referred to as the oxygen catastrophe. Geological evidence suggests that oxygenic photosynthesis, such as that in cyanobacteria , became important during the Paleoproterozoic era around two billion years ago.