Search results
Results from the WOW.Com Content Network
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The Concorde TSP Solver is a program for solving the travelling salesman problem. It was written by David Applegate , Robert E. Bixby , Vašek Chvátal , and William J. Cook , in ANSI C , and is freely available for academic use.
In combinatorial optimization, the set TSP, also known as the generalized TSP, group TSP, One-of-a-Set TSP, Multiple Choice TSP or Covering Salesman Problem, is a generalization of the traveling salesman problem (TSP), whereby it is required to find a shortest tour in a graph which visits all specified subsets of the vertices of a graph.
The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...
The Steiner traveling salesman problem (Steiner TSP, or STSP) is an extension of the traveling salesman problem. Given a list of cities, some of which are required, and the lengths of the roads between them, the goal is to find the shortest possible walk that visits each required city and then returns to the origin city. [ 1 ]
The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.
The multi-fragment (MF) algorithm is a heuristic or approximation algorithm for the travelling salesman problem (TSP) (and related problems). This algorithm is also sometimes called the "greedy algorithm" for the TSP.