Search results
Results from the WOW.Com Content Network
The Schrödinger equation for the electron in a hydrogen atom (or a hydrogen-like atom) is = where is the electron charge, is the position of the electron relative to the nucleus, = | | is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space and = + is the 2-body ...
The Coulomb wave equation for a single charged particle of mass is the Schrödinger equation with Coulomb potential [1] (+) = (),where = is the product of the charges of the particle and of the field source (in units of the elementary charge, = for the hydrogen atom), is the fine-structure constant, and / is the energy of the particle.
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.
Several phenomena have the same behavior as quantum tunnelling. Two examples are evanescent wave coupling [49] (the application of Maxwell's wave-equation to light) and the application of the non-dispersive wave-equation from acoustics applied to "waves on strings". [citation needed] These effects are modeled similarly to the rectangular ...
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
Schrödinger's equation, in bra–ket notation, is | = ^ | where ^ is the Hamiltonian operator.. The Hamiltonian operator can be written ^ = ^ + (^) where (^) is the potential energy, m is the mass and we have assumed for simplicity that there is only one spatial dimension q.
Demanding that the classical equations of motion are preserved is not a strong enough condition to determine the matrix elements. The Planck constant does not appear in the classical equations, so that the matrices could be constructed for many different values of ħ and still satisfy the equations of motion, but with different energy levels.
For example, the electron wave function for an unexcited hydrogen atom is a spherically symmetric function known as an s orbital . Analytic solutions of the Schrödinger equation are known for very few relatively simple model Hamiltonians including the quantum harmonic oscillator , the particle in a box , the dihydrogen cation , and the ...