Search results
Results from the WOW.Com Content Network
The superposition principle, [1] also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually.
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position.
A linear circuit is an electronic circuit which obeys the superposition principle.This means that the output of the circuit F(x) when a linear combination of signals ax 1 (t) + bx 2 (t) is applied to it is equal to the linear combination of the outputs due to the signals x 1 (t) and x 2 (t) applied separately:
In linear circuits, due to the superposition principle, the output of a circuit is equal to the sum of the output due to its DC sources alone, and the output from its AC sources alone. Therefore, the DC and AC response of a circuit is often analyzed independently, using separate DC and AC equivalent circuits which have the same response as the ...
A qubit is a generalization of a bit (a system with two possible states) capable of occupying a quantum superposition of both states. A quantum gate, on the other hand, is a generalization of a logic gate describing the transformation of one or more qubits once a gate is applied given their initial state.
To further illustrate, Schrödinger described how one could, in principle, create a superposition in a large-scale system by making it dependent on a quantum particle that was in a superposition. He proposed a scenario with a cat in a closed steel chamber, wherein the cat's life or death depended on the state of a radioactive atom, whether it ...
They obey the superposition principle. Examples of linear elements are resistances, capacitances, inductances, and linear-dependent sources. Circuits with only linear elements, linear circuits, do not cause intermodulation distortion and can be easily analysed with powerful mathematical techniques such as the Laplace transform.
In principle, one needs only to prepare an n qubit state ψ as an appropriate superposition of computational basis states for the input and measure the output Uψ. Unfortunately, there are two problems with this: One cannot measure the phase of ψ at any computational basis state so there is no way of reading out the complete answer.