enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    However, in single linkage clustering, the order in which clusters are formed is important, while for minimum spanning trees what matters is the set of pairs of points that form distances chosen by the algorithm. Alternative linkage schemes include complete linkage clustering, average linkage clustering (UPGMA and WPGMA), and Ward's method. In ...

  3. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    Complete linkage clustering avoids a drawback of the alternative single linkage clustering method - the so-called chaining phenomenon, where clusters formed via single linkage clustering may be forced together due to single elements being close to each other, even though many of the elements in each cluster may be very distant to each other ...

  4. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Alternative linkage schemes include single linkage clustering and average linkage clustering - implementing a different linkage in the naive algorithm is simply a matter of using a different formula to calculate inter-cluster distances in the initial computation of the proximity matrix and in step 4 of the above algorithm. An optimally ...

  5. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    As with complete linkage and average distance, the difficulty of calculating cluster distances causes the nearest-neighbor chain algorithm to take time and space O(n 2) to compute the single-linkage clustering. However, the single-linkage clustering can be found more efficiently by an alternative algorithm that computes the minimum spanning ...

  6. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  7. Nested association mapping - Wikipedia

    en.wikipedia.org/wiki/Nested_Association_Mapping

    Linkage analysis, however, has the disadvantages of low mapping resolution and low allele richness. Association mapping, by contrast, takes advantage of historic recombination, and is performed by scanning a genome for SNPs in linkage disequilibrium with a trait of interest. Association mapping has advantages over linkage analysis in that it ...

  8. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged).

  9. Family-based QTL mapping - Wikipedia

    en.wikipedia.org/wiki/Family-based_QTL_mapping

    Linkage and association analysis are primary tools for gene discovery, localization and functional analysis. [ 3 ] [ 4 ] While conceptual underpinning of these approaches have been long known, advances in recent decades in molecular genetics , development in efficient algorithms, and computing power have enabled the large scale application of ...