enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    During execution, the distance of a node N is the length of the shortest path discovered so far between the starting node and N. [18] From the unvisited set, select the current node to be the one with the smallest (finite) distance; initially, this is the starting node (distance zero). If the unvisited set is empty, or contains only nodes with ...

  4. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The latter may occur even if the distance in the other direction between the same two vertices is defined. In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path ...

  5. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]

  6. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    A* assigns a weight to each open node equal to the weight of the edge to that node plus the approximate distance between that node and the finish. This approximate distance is found by the heuristic, and represents a minimum possible distance between that node and the end. This allows it to eliminate longer paths once an initial path is found.

  7. Widest path problem - Wikipedia

    en.wikipedia.org/wiki/Widest_path_problem

    The leaves of the Cartesian tree represent the vertices of the input graph, and the minimax distance between two vertices equals the weight of the Cartesian tree node that is their lowest common ancestor. Once the minimum spanning tree edges have been sorted, this Cartesian tree can be constructed in linear time. [16]

  8. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.

  9. Average path length - Wikipedia

    en.wikipedia.org/wiki/Average_path_length

    Average path length, or average shortest path length is a concept in network topology that is defined as the average number of steps along the shortest paths for all possible pairs of network nodes. It is a measure of the efficiency of information or mass transport on a network.