Search results
Results from the WOW.Com Content Network
Möbius (left) and Hückel (right) orbital arrays. The two orbital arrays in Figure 3 are just examples and do not correspond to real systems. In inspecting the Möbius one on the left, plus–minus overlaps are seen between orbital pairs 2-3, 3-4, 4-5, 5-6, and 6-1, corresponding to an odd number (5), as required by a Möbius system.
The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules , such as ethylene , benzene , butadiene , and pyridine .
In contrast to the rarity of Möbius aromatic ground state molecular systems, there are many examples of pericyclic transition states that exhibit Möbius aromaticity. The classification of a pericyclic transition state as either Möbius or Hückel topology determines whether 4N or 4N + 2 electrons are required to make the transition state aromatic or antiaromatic, and therefore, allowed or ...
Hückel's rule can also be applied to molecules containing other atoms such as nitrogen or oxygen. For example, pyridine (C 5 H 5 N) has a ring structure similar to benzene, except that one -CH- group is replaced by a nitrogen atom with no hydrogen. There are still six π electrons and the pyridine molecule is also aromatic and known for its ...
Hückel is most famous for developing the Hückel method of approximate molecular orbital (MO) calculations on π electron systems, a simplified quantum-mechanical method to deal with planar unsaturated organic molecules. In 1930 he proposed a σ/π separation theory to explain the restricted rotation of alkenes (compounds containing a C=C ...
The method has wide applicability in precise prediction of electronic transitions, particularly lower singlet transitions, and found wide application in theoretical and applied quantum chemistry. The two basic papers on this subject were among the top five chemistry and physics citations reported in ISI, Current Contents 1977 for the period of ...
In theoretical chemistry, Specific ion Interaction Theory (SIT theory) is a theory used to estimate single-ion activity coefficients in electrolyte solutions at relatively high concentrations.
In the extended Hückel method, only valence electrons are considered; the core electron energies and functions are supposed to be more or less constant between atoms of the same type. The method uses a series of parametrized energies calculated from atomic ionization potentials or theoretical methods to fill the diagonal of the Fock matrix.