enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Aircraft use the wing area (or rotor-blade area) as the reference area, which makes for an easy comparison to lift. Airships and bodies of revolution use the volumetric coefficient of drag, in which the reference area is the square of the cube root of the airship's volume. Sometimes different reference areas are given for the same object in ...

  3. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  4. Zero-lift drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Zero-lift_drag_coefficient

    As noted earlier, , =,. The total drag coefficient can be estimated as: = [()], where is the propulsive efficiency, P is engine power in horsepower, sea-level air density in slugs/cubic foot, is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour.

  5. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    P R curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m² and a propeller efficiency of 0.8. W = (ρ/2).S.V 2.C L and P R = (ρ/2η).S.V 3.C D. The extra factor of V /η, with η the propeller efficiency, in the second equation enters because P R = (required thrust)× V /η. Power rather than ...

  6. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    The Monarch Butterfly has a very low 0.168 kg/m 2 wing loading The McDonnell Douglas MD-11 has a high 837 kg/m 2 maximum wing loading. In aerodynamics, wing loading is the total weight of an aircraft or flying animal divided by the area of its wing.

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  8. Vortex lattice method - Wikipedia

    en.wikipedia.org/wiki/Vortex_lattice_method

    The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag.

  9. Sears–Haack body - Wikipedia

    en.wikipedia.org/wiki/Sears–Haack_body

    A superficially related concept is the Whitcomb area rule, which states that wave drag due to volume in transonic flow depends primarily on the distribution of total cross-sectional area, and for low wave drag this distribution must be smooth. A common misconception is that the Sears–Haack body has the ideal area distribution according to the ...