Search results
Results from the WOW.Com Content Network
The Mollier enthalpy–entropy diagram for water and steam. The "dryness fraction", x , gives the fraction by mass of gaseous water in the wet region, the remainder being droplets of liquid. An enthalpy–entropy chart , also known as the H – S chart or Mollier diagram , plots the total heat against entropy, [ 1 ] describing the enthalpy of a ...
The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal) and the pressure. Note that for some thermodynamic databases such as for steam, the reference temperature is 273.15 K (0 °C).
If the gas is heated so that the temperature of the gas goes up to T 2 while the piston is allowed to rise to V 2 as in Figure 1, then the pressure is kept the same in this process due to the free floating piston being allowed to rise making the process an isobaric process or constant pressure process. This Process Path is a straight horizontal ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.
The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.
For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...
Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds