Search results
Results from the WOW.Com Content Network
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
is the static pressure [M 1 L −1 T −2], is the specific gas constant [L 2 T −2 θ −1] (287.05 J/(kg K) for air), is the density [M 1 L −3]. If the temperature is increased, but the volume kept constant, then the Knudsen number (and the mean free path) doesn't change (for an ideal gas). In this case, the density stays the same.
Thus he argued that in his case the attractive pressure was proportional to the square of the density. [13] The proportionality constant, , when written in the form used above, has the dimension [pv 2] (pressure times molar volume squared), which is also molar energy times molar volume.
The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.
The equation above presupposes that the gas density is low (i.e. the pressure is low). This implies that the transport of momentum through the gas due to the translational motion of molecules is much larger than the transport due to momentum being transferred between molecules during collisions.
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
There are more detailed generalized compressibility factor graphs based on as many as 25 or more different pure gases, such as the Nelson-Obert graphs. Such graphs are said to have an accuracy within 1–2 percent for values greater than 0.6 and within 4–6 percent for values of 0.3–0.6.