Search results
Results from the WOW.Com Content Network
The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: ... [2] 2813001 4 = 2767624 4 + 1390400 4 ...
The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. [1] [2]
The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...
The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.
This way the formula ... Power functions for n = 1, 3, 5 Power functions for n = 2, 4, 6. Real functions of the form () =, where , are sometimes ...
Since a = n(n + 1)/2, these formulae show that for an odd power (greater than 1), the sum is a polynomial in n having factors n 2 and (n + 1) 2, while for an even power the polynomial has factors n, n + 1/2 and n + 1.
It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be computed by the multiplicative formula ( n k ) = n × ( n − 1 ) × ⋯ × ( n − k + 1 ) k × ( k − 1 ) × ⋯ × 1 , {\displaystyle {\binom {n}{k}}={\frac {n\times (n-1)\times \cdots \times (n-k+1)}{k\times (k-1 ...