enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Displacement (ship) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(ship)

    The displacement or displacement tonnage of a ship is its weight. As the term indicates, it is measured indirectly, using Archimedes' principle , by first calculating the volume of water displaced by the ship, then converting that value into weight.

  3. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.

  4. Metacentric height - Wikipedia

    en.wikipedia.org/wiki/Metacentric_height

    They then calculate the righting moment at this angle, which is determined using the equation: = Where RM is the righting moment, GZ is the righting arm and Δ is the displacement. Because the vessel displacement is constant, common practice is to simply graph the righting arm vs the angle of heel.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Another possible formula for calculating buoyancy of an object is by finding the apparent weight of that particular object in the air (calculated in Newtons), and apparent weight of that object in the water (in Newtons). To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies:

  7. Sail area-displacement ratio - Wikipedia

    en.wikipedia.org/wiki/Sail_Area-Displacement_ratio

    The sail area-displacement ratio (SA/D) is a calculation used to express how much sail a boat carries relative to its weight. [1]/ = [() /] = () In the first equation, the denominator in pounds is divided by 64 to convert it to cubic feet (because 1 cubic foot of salt water weights 64 pounds).

  8. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on the block that looks like:

  9. Displacement–length ratio - Wikipedia

    en.wikipedia.org/wiki/Displacement–length_ratio

    The displacement–length ratio (DLR or D/L ratio) is a calculation used to express how heavy a boat is relative to its waterline length. [1] DLR was first published in Taylor, David W. (1910). The Speed and Power of Ships: A Manual of Marine Propulsion. John Wiley & Sons. p. 99. [2]