Search results
Results from the WOW.Com Content Network
The partial volume of a particular gas is a fraction of the total volume occupied by the gas mixture, with unchanged pressure and temperature. In gas mixtures, e.g. air, the partial volume allows focusing on one particular gas component, e.g. oxygen.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
That is 8 times , the volume of each particle of radius / , but there are 2 particles which gives 4 times the volume per particle. The total excluded volume is then = ; that is, 4 times the volume of all the particles. Van der Waals and his contemporaries used an alternative, but equivalent, analysis based on the mean free ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
For petroleum gases, the standard cubic foot (scf) is defined as one cubic foot of gas at 60 °F (288.7 K; 15.56 °C) and at normal sea level air pressure. The pressure definition differs between sources, but are all close to normal sea level air pressure. A pressure of 14.696 pounds per square inch (1.00000 atm; 101.325 kPa). [2]
where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.
The lifting force for a volume of gas is given by the equation: F B = (ρ air - ρ gas) × g × V. Where F B = Buoyant force (in newton); g = gravitational acceleration = 9.8066 m/s 2 = 9.8066 N/kg; V = volume (in m 3). The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between ...