Search results
Results from the WOW.Com Content Network
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...
The figure is a graph of ln(1 + x) and some of its Taylor polynomials around 0. These approximations converge to the function only in the region −1 < x ≤ 1; outside this region, the higher-degree Taylor polynomials devolve to worse approximations for the function.
The series was discovered independently by Johannes Hudde (1656) [1] and Isaac Newton (1665) but neither published the result. Nicholas Mercator also independently discovered it, and included values of the series for small values in his 1668 treatise Logarithmotechnia; the general series was included in John Wallis's 1668 review of the book in the Philosophical Transactions.
Taylor's theorem [4] [5] [6] — Let k ≥ 1 be an integer and let the function f : R → R be k times differentiable at the point a ∈ R. Then there exists a function h k : R → R such that f ( x ) = ∑ i = 0 k f ( i ) ( a ) i !
As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Enjoy a classic game of Hearts and watch out for the Queen of Spades!