Search results
Results from the WOW.Com Content Network
Bioinformatics uses biology, chemistry, physics, computer science, data science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The process of analyzing and interpreting data can sometimes be referred to as computational biology , however this distinction between the two terms ...
Biological data has also been difficult to define, as bioinformatics is a wide-encompassing field. Further, the question of what constitutes as being a living organism has been contentious, as "alive" represents a nebulous term that encompasses molecular evolution, biological modeling, biophysics, and systems biology.
Clustering is central to much data-driven bioinformatics research and serves as a powerful computational method whereby means of hierarchical, centroid-based, distribution-based, density-based, and self-organizing maps classification, has long been studied and used in classical machine learning settings.
As such, computational genomics may be regarded as a subset of bioinformatics and computational biology, but with a focus on using whole genomes (rather than individual genes) to understand the principles of how the DNA of a species controls its biology at the molecular level and beyond. With the current abundance of massive biological datasets ...
A more restrictive definition views nanobiotechnology more specifically as the design and engineering of proteins that can then be assembled into larger, functional structures [2] [3] The implementation of nanobiotechnology, as defined in this narrower sense, provides scientists with the ability to engineer biomolecular systems specifically so ...
The Database Issue of NAR is freely available, and categorizes many of the public biological databases. A companion database to the issue called the Online Molecular Biology Database Collection lists 1,380 online databases. [15] Other collections of databases exist such as MetaBase and the Bioinformatics Links Collection. [16] [17]
In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. [1] Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix.
The term structural has the same meaning as in structural biology, and structural bioinformatics can be seen as a part of computational structural biology. The main objective of structural bioinformatics is the creation of new methods of analysing and manipulating biological macromolecular data in order to solve problems in biology and generate ...