Search results
Results from the WOW.Com Content Network
Cantor–Bernstein–Schröder theorem (set theory, cardinal numbers) Cantor's intersection theorem (real analysis) Cantor's isomorphism theorem (order theory) Cantor's theorem (set theory, Cantor's diagonal argument) Carathéodory–Jacobi–Lie theorem (symplectic topology) Carathéodory's existence theorem (ordinary differential equations)
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory; Brill–Noether theory; Catastrophe theory; Category theory; Chaos theory; Character theory; Choquet theory; Class field theory; Cobordism theory; Coding theory; Cohomology theory ...
There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics).
Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. For example, the physicist Albert Einstein's formula = is the quantitative representation in mathematical notation of mass–energy equivalence. [1]
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [ 1 ] Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers ), or defined as generalizations of the ...
The use of multiple representations supports and requires tasks that involve decision-making and other problem-solving skills. [2] [3] [4] The choice of which representation to use, the task of making representations given other representations, and the understanding of how changes in one representation affect others are examples of such mathematically sophisticated activities.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...