Search results
Results from the WOW.Com Content Network
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...
Martingale (betting system), in 18th century France; a dolphin striker, a spar aboard a sailing ship; In the sport of fencing, a martingale is a strap attached to the sword handle to prevent a sword from being dropped if disarmed; In the theatrical lighting industry, martingale is an obsolete term for a twofer, or occasionally a threefer
A martingale is a class of betting strategies that originated from and were popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins the stake if a coin comes up heads and loses if it comes up tails.
In the mathematical theory of probability, a Doob martingale (named after Joseph L. Doob, [1] also known as a Levy martingale) is a stochastic process that approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as the evolving sequence of best approximations to the random ...
By construction, this implies that if is a martingale, then = will be an MDS—hence the name. The MDS is an extremely useful construct in modern probability theory because it implies much milder restrictions on the memory of the sequence than independence , yet most limit theorems that hold for an independent sequence will also hold for an MDS.
Pages in category "Martingale theory" The following 28 pages are in this category, out of 28 total. ... About Wikipedia; Disclaimers; Contact Wikipedia; Code of Conduct;
The martingale representation theorem can be used to establish the existence of a hedging strategy. Suppose that ( M t ) 0 ≤ t < ∞ {\displaystyle \left(M_{t}\right)_{0\leq t<\infty }} is a Q-martingale process, whose volatility σ t {\displaystyle \sigma _{t}} is always non-zero.
A martingale is a discrete-time or continuous-time stochastic process with the property that, at every instant, given the current value and all the past values of the process, the conditional expectation of every future value is equal to the current value.