Search results
Results from the WOW.Com Content Network
Mesh data is usually stored using 32-bit single-precision floats for the vertices, however in some situations it is acceptable to reduce the precision to only 16-bit half-precision, requiring only half the storage at the expense of some precision. Mesh quantization can also be done with 8-bit or 16-bit fixed precision depending on the requirements.
The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
7! 40320 = 8! 16-bit: 65535 3 62880 = 9! 36 28800 = 10! 399 16800 = 11! 4790 01600 = 12! ... although conversion to a decimal base for output becomes more difficult ...
This is similar to what happens in decimal when certain single-digit numbers are added together; if the result equals or exceeds the value of the radix (10), the digit to the left is incremented: 5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 10 1) ) 7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 10 1) ) This is known as carrying. When ...
Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.
To convert a decimal fraction to octal, multiply by 8; the integer part of the result is the first digit of the octal fraction. ... 7: 1/16 1/15 3, 5: 0.0 6: 0. 0421: ...
For example, the Decimal32 significand can be up to 10 7 −1 = 9 999 999 = 98967F 16 = 1001 1000100101 1001111111 2. While the encoding can represent larger significands, they are illegal and the standard requires implementations to treat them as 0, if encountered on input.