Search results
Results from the WOW.Com Content Network
Samuel R. (Sam) Buss (born August 6, 1957) is an American computer scientist and mathematician who has made major contributions to the fields of mathematical logic, complexity theory and proof complexity. He is currently a professor at the University of California, San Diego, Department of Computer Science and Department of Mathematics.
Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also focuses on applications ...
Gaisi Takeuti (竹内 外史, Takeuchi, Gaishi, January 25, 1926 – May 10, 2017 [1]) was a Japanese mathematician, known for his work in proof theory. [2] After graduating from Tokyo University, he went to Princeton to study under Kurt Gödel. He later became a professor at the University of Illinois at Urbana–Champaign.
Hilbert's 1927, Based on an earlier 1925 "foundations" lecture (pp. 367–392), presents his 17 axioms—axioms of implication #1-4, axioms about & and V #5-10, axioms of negation #11-12, his logical ε-axiom #13, axioms of equality #14-15, and axioms of number #16-17—along with the other necessary elements of his Formalist "proof theory"—e ...
A propositional proof system is given as a proof-verification algorithm P(A,x) with two inputs.If P accepts the pair (A,x) we say that x is a P-proof of A.P is required to run in polynomial time, and moreover, it must hold that A has a P-proof if and only if A is a tautology.
Propositional proof system can be compared using the notion of p-simulation. A propositional proof system P p-simulates Q (written as P ≤ p Q) when there is a polynomial-time function F such that P(F(x)) = Q(x) for every x. [1] That is, given a Q-proof x, we can find in polynomial time a P-proof of the same tautology.
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. [1] Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula.
The notion of analytic proof was introduced into proof theory by Gerhard Gentzen for the sequent calculus; the analytic proofs are those that are cut-free.His natural deduction calculus also supports a notion of analytic proof, as was shown by Dag Prawitz; the definition is slightly more complex—the analytic proofs are the normal forms, which are related to the notion of normal form in term ...