enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjective effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But ...

  3. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Under-representation of one class in the outcome (dependent) variable. Suppose we want to predict, from a large clinical dataset, which patients are likely to develop a particular disease (e.g., diabetes). Assume, however, that only 10% of patients go on to develop the disease. Suppose we have a large existing dataset.

  5. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Regularization: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function that discourages large parameter values. It can also be used to prevent underfitting by controlling the complexity of the model. [15] Ensemble Methods: Ensemble methods combine multiple models to create a more accurate ...

  6. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number ...

  7. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Similarly, indicators of the specific role played by various predictor variables (e.g., values of regression coefficients) will tend to be unstable. While the holdout method can be framed as "the simplest kind of cross-validation", [ 19 ] many sources instead classify holdout as a type of simple validation, rather than a simple or degenerate ...

  9. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A regularization term (or regularizer) () is added to a loss function: = ((),) + where is an underlying loss function that describes the cost of predicting () when the label is , such as the square loss or hinge loss; and is a parameter which controls the importance of the regularization term.