enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.

  4. List of mathematical identities - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity; Binomial inverse theorem; Binomial identity; Brahmagupta–Fibonacci two-square identity; Candido's identity; Cassini and Catalan identities; Degen's eight-square identity; Difference of two squares; Euler's four-square identity; Euler ...

  5. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In the time before electronic calculators were available, this method was preferable to an application of the law of cosines c = √ a 2 + b 2 − 2ab cos γ, as this latter law necessitated an additional lookup in a logarithm table, in order to compute the square root. In modern times the law of tangents may have better numerical properties ...

  6. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2]A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [] in 1746.

  7. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    1 1 Multiplicative identity of . Prehistory Two: 2 2 Prehistory One half ⁠ 1 / 2 ⁠ 0.5 Prehistory Pi: 3.14159 26535 89793 23846 [Mw 1] [OEIS 1] Ratio of a circle's circumference to its diameter. 1900 to 1600 BCE [2] Tau: 6.28318 53071 79586 47692 [3] [OEIS 2]