enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    Singly even numbers are those with ν 2 (n) = 1, i.e., integers of the form 4m + 2. Doubly even numbers are those with ν 2 (n) > 1, i.e., integers of the form 4m. In this terminology, a doubly even number may or may not be divisible by 8, so there is no particular terminology for "triply even" numbers in pure math, although it is used in ...

  3. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...

  4. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The addition, subtraction and multiplication of even and odd integers obey simple rules. The addition or subtraction of two even numbers or of two odd numbers always produces an even number, e.g., 4 + 6 = 10 and 3 + 5 = 8. Conversely, the addition or subtraction of an odd and even number is always odd, e.g., 3 + 8 = 11. The multiplication of ...

  5. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠. If one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly

  6. Parity of a permutation - Wikipedia

    en.wikipedia.org/wiki/Parity_of_a_permutation

    An even permutation can be obtained as the composition of an even number (and only an even number) of exchanges (called transpositions) of two elements, while an odd permutation can be obtained by (only) an odd number of transpositions. The following rules follow directly from the corresponding rules about addition of integers: [1]

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...

  8. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    The standard definition of "even number" can be used to directly prove that zero is even. A number is called "even" if it is an integer multiple of 2. As an example, the reason that 10 is even is that it equals 5 × 2. In the same way, zero is an integer multiple of 2, namely 0 × 2, so zero is even. [2]

  9. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -8..." In logic, the extension of a predicate is the set of all things for which the predicate is true. [49]