Search results
Results from the WOW.Com Content Network
Environmental epigenetics is a branch of epigenetics that studies the influence of external environmental factors on the gene expression of a developing embryo. [1] The way that genes are expressed may be passed down from parent to offspring through epigenetic modifications, although environmental influences do not alter the genome itself.
Epigenetic mechanisms. In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. [1] The Greek prefix epi-(ἐπι-"over, outside of, around") in epigenetics implies features that are "on top of" or "in addition to" the traditional (DNA sequence based) genetic mechanism of inheritance. [2]
The environmental source of such extracellular DNA is proposed to be plant litter but also other sources in different ecosystems and organisms, with the size of DNA fragments experimentally shown to have an inhibitory effect upon their conspecific organisms typically ranging between 200 and 500 base pairs.
Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. [ 1 ]
These effects are referred to as epigenetic and involve the higher order structure of DNA, non-sequence specific DNA binding proteins and chemical modification of DNA. [61] In general epigenetic effects alter the accessibility of DNA to proteins and so modulate transcription. [62] In eukaryotes, DNA is organized in form of nucleosomes. Note how ...
Behavioral epigenetics is the field of study examining the role of epigenetics in shaping animal and human behavior. [1] It seeks to explain how nurture shapes nature, [2] where nature refers to biological heredity [3] and nurture refers to virtually everything that occurs during the life-span (e.g., social-experience, diet and nutrition, and exposure to toxins). [4]
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature
The area of study examines protein interactions with DNA and its associated components, including histones and various other modifications such as methylation, which alter the rate or target of transcription. Epi-alleles and epi-mutants, much like their genetic counterparts, describe changes in phenotypes due to epigenetic mechanisms.