enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.

  3. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = ⁡, where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.

  4. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    A magnetic field (sometimes called B-field [1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.

  5. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    10 −6 –10 −3 G – the magnetic field of Galactic molecular clouds. Typical magnetic field strengths within the interstellar medium of the Milky Way are ~5 μG. 0.25–0.60 G – the Earth's magnetic field at its surface; 4 G – near Jupiter's equator; 25 G – the Earth's magnetic field in its core [4] 50 G – a typical refrigerator magnet

  6. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]

  7. Magnetopause - Wikipedia

    en.wikipedia.org/wiki/Magnetopause

    The condition governing this position is that the dynamic ram pressure from the solar wind is equal to the magnetic pressure from the Earth's magnetic field: [note 1] (()) where and are the density and velocity of the solar wind, and B(r) is the magnetic field strength of the planet in SI units (B in T, μ 0 in H/m).

  8. Magnetic declination - Wikipedia

    en.wikipedia.org/wiki/Magnetic_declination

    The magnetic declination in a given area may (most likely will) change slowly over time, possibly as little as 22.5 degrees every hundred years or so, depending on where it is measured. For a location close to the pole like Ivujivik , the declination may change by 1 degree every three years.

  9. Geomagnetic pole - Wikipedia

    en.wikipedia.org/wiki/Geomagnetic_pole

    Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.