Search results
Results from the WOW.Com Content Network
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
A magnetic field (sometimes called B-field [1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.
10 −6 –10 −3 G – the magnetic field of Galactic molecular clouds. Typical magnetic field strengths within the interstellar medium of the Milky Way are ~5 μG. 0.25–0.60 G – the Earth's magnetic field at its surface; 4 G – near Jupiter's equator; 25 G – the Earth's magnetic field in its core [4] 50 G – a typical refrigerator magnet
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The condition governing this position is that the dynamic ram pressure from the solar wind is equal to the magnetic pressure from the Earth's magnetic field: [note 1] (()) where and are the density and velocity of the solar wind, and B(r) is the magnetic field strength of the planet in SI units (B in T, μ 0 in H/m).
The magnetic declination in a given area may (most likely will) change slowly over time, possibly as little as 2–2.5 degrees every hundred years or so, depending on where it is measured. For a location close to the pole like Ivujivik , the declination may change by 1 degree every three years.
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.