Search results
Results from the WOW.Com Content Network
The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real algebraic numbers. As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ {\displaystyle \forall } in the first order formula ∀ x P ( x ) {\displaystyle \forall xP(x)} expresses that everything in the domain satisfies the property denoted by P ...
In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier , the universal quantifier , and the counting quantifiers .
In semantics and mathematical logic, a quantifier is a way that an argument claims that an object with a certain property exists or that no object with a certain property exists. Not to be confused with Category:Quantification (science) .
For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
A counting quantifier is a mathematical term for a quantifier of the form "there exists at least k elements that satisfy property X". In first-order logic with equality, counting quantifiers can be defined in terms of ordinary quantifiers, so in this context they are a notational shorthand.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...