enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    The vector cross product, used to define the axis–angle representation, does confer an orientation ("handedness") to space: in a three-dimensional vector space, the three vectors in the equation a × b = c will always form a right-handed set (or a left-handed set, depending on how the cross product is defined), thus fixing an orientation in ...

  4. Line integral convolution - Wikipedia

    en.wikipedia.org/wiki/Line_integral_convolution

    In scientific visualization, line integral convolution (LIC) is a method to visualize a vector field (such as fluid motion) at high spatial resolutions. [1] The LIC technique was first proposed by Brian Cabral and Leith Casey Leedom in 1993.

  5. Tensor sketch - Wikipedia

    en.wikipedia.org/wiki/Tensor_sketch

    The tensor sketch of Pham and Pagh [4] computes (), where () and () are independent count sketch matrices and is vector convolution. They show that, amazingly, this equals C ( x ⊗ y ) {\displaystyle C(x\otimes y)} – a count sketch of the tensor product!

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  7. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  8. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    A circulant matrix is fully specified by one vector, , which appears as the first column (or row) of . The remaining columns (and rows, resp.) of C {\displaystyle C} are each cyclic permutations of the vector c {\displaystyle c} with offset equal to the column (or row, resp.) index, if lines are indexed from 0 {\displaystyle 0} to n − 1 ...

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...