Search results
Results from the WOW.Com Content Network
Though all heavier helium isotopes decay with a half-life of <1 second, particle accelerator collisions have been used, to create unusual nuclei of elements such as helium, lithium, and nitrogen. The unusual nuclear structures of such isotopes may offer insights into the isolated properties of neutrons and physics beyond the Standard Model. [28 ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.
It is possible to produce exotic helium isotopes, which rapidly decay into other substances. The shortest-lived heavy helium isotope is the unbound helium-10 with a half-life of 2.6(4) × 10 −22 s. [7] Helium-6 decays by emitting a beta particle and has a half-life of 0.8 second. Helium-7 and helium-8 are created in certain nuclear reactions ...
Helium has two abundant isotopes: helium-3, which is primordial with high abundance in earth's core and mantle, and helium-4, which originates from decay of radionuclides (232 Th, 235,238 U) abundant in the earth's crust. Isotopic ratios of helium are represented by R A value, a value relative to air measurement (3 He/ 4 He = 1.39*10 −6). [98]
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen , a closed-form solution to the Schrödinger equation for the helium atom has not been found.
The helium atom. Depicted are the nucleus (pink) and the electron cloud distribution (black). The nucleus (upper right) in helium-4 is in reality spherically symmetric and closely resembles the electron cloud, although for more complicated nuclei this is not always the case. Helium-4 (4 He) is a stable isotope of the element helium.