enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  5. Prismatoid - Wikipedia

    en.wikipedia.org/wiki/Prismatoid

    Prismatoid with parallel faces A 1 and A 3, midway cross-section A 2, and height h. In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes.Its lateral faces can be trapezoids or triangles. [1]

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron forms the maximal cross-section of a 24-cell, and also forms the hull of its vertex-first parallel projection into three dimensions. The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24 ...

  7. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    (The icosidodecahedron is the equatorial cross-section of the 600-cell, and the decagon is the equatorial cross-section of the icosidodecahedron.) These radially golden polytopes can be constructed, with their radii, from golden triangles which meet at the center, each contributing two radii and an edge.

  8. Composite polyhedron - Wikipedia

    en.wikipedia.org/wiki/Composite_polyhedron

    Any composite polyhedron can be constructed by attaching two or more non-composite polyhedra. Alternatively, it can be defined as a convex polyhedron that can separated into two or more non-composite polyhedra. [1] Examples can be found in a polyhedron that is constructed by attaching the regular base of pyramids onto another

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    Most Goldberg polyhedra can be constructed using Conway polyhedron notation starting with (T)etrahedron, (C)ube, and (D)odecahedron seeds. The chamfer operator, c , replaces all edges by hexagons, transforming GP ( m , n ) to GP (2 m ,2 n ), with a T multiplier of 4.