enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    This is possible provided the total entropy change of the system plus the surroundings is positive as required by the second law: ΔS tot = ΔS + ΔS R > 0. For the three examples given above: 1) Heat can be transferred from a region of lower temperature to a higher temperature in a refrigerator or in a heat pump. These machines must provide ...

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [23] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  4. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The entropy of the surrounding room decreases less than the entropy of the ice and water increases: the room temperature of 298 K is larger than 273 K and therefore the ratio, (entropy change), of ⁠ δQ / 298 K ⁠ for the surroundings is smaller than the ratio (entropy change), of ⁠ δQ / 273 K ⁠ for the ice and water system. This is ...

  5. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    where is the total entropy change in the external thermal reservoirs (surroundings), is an infinitesimal amount of heat that is taken from the reservoirs and absorbed by the system (> if heat from the reservoirs is absorbed by the system, and < 0 if heat is leaving from the system to the reservoirs) and is the common temperature of the ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  7. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    Entropy changes for systems in a canonical state A system with a well-defined temperature, i.e., one in thermal equilibrium with a thermal reservoir, has a probability of being in a microstate i given by Boltzmann's distribution .

  8. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1]It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.

  9. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    Because entropy is a state function, the change in entropy of the system is the same whether the process is reversible or irreversible. However, the impossibility occurs in restoring the environment to its own initial conditions. An irreversible process increases the total entropy of the system and its surroundings.