Search results
Results from the WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In mathematics, an arithmetico-geometric sequence is the result of element-by-element multiplication of the elements of a geometric progression with the corresponding elements of an arithmetic progression. The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a ...
The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two.As a geometric series, it is characterized by its first term, 1, and its common ratio, 2.
All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:
The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum.
Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.