Search results
Results from the WOW.Com Content Network
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
With online algorithms the pattern can be processed before searching but the text cannot. In other words, online techniques do searching without an index. Early algorithms for online approximate matching were suggested by Wagner and Fischer [3] and by Sellers. [2] Both algorithms are based on dynamic programming but solve
The algorithm for producing the tables was published in a follow-on paper; this paper contained errors which were later corrected by Wojciech Rytter in 1980. [3] [4] The algorithm preprocesses the string being searched for (the pattern), but not the string being searched in (the text). It is thus well-suited for applications in which the ...
Gestalt pattern matching, [1] also Ratcliff/Obershelp pattern recognition, [2] is a string-matching algorithm for determining the similarity of two strings. It was developed in 1983 by John W. Ratcliff and John A. Obershelp and published in the Dr. Dobb's Journal in July 1988.
Several string-matching algorithms, including the Knuth–Morris–Pratt algorithm and the Boyer–Moore string-search algorithm, reduce the worst-case time for string matching by extracting more information from each mismatch, allowing them to skip over positions of the text that are guaranteed not to match the pattern.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
Algorithms for matching wildcards in simple string-matching situations have been developed in a number of recursive and non-recursive varieties. [ 11 ] Tree patterns
The bitap algorithm (also known as the shift-or, shift-and or Baeza-Yates-Gonnet algorithm) is an approximate string matching algorithm. The algorithm tells whether a given text contains a substring which is "approximately equal" to a given pattern, where approximate equality is defined in terms of Levenshtein distance – if the substring and pattern are within a given distance k of each ...