Search results
Results from the WOW.Com Content Network
Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...
The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5 / 2 = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.
The triangles that make up configurations are known as component triangles. [1] Triangles must not only be a part of a configuration set to be in a similarity system, but must also be directly similar. [1] Direct similarity implies that all angles are equal between two given triangle and that they share the same rotational sense. [2]
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
Two triangles are said to be similar, if every angle of one triangle has the same measure as the corresponding angle in the other triangle. The corresponding sides of similar triangles have lengths that are in the same proportion, and this property is also sufficient to establish similarity. [39] Some basic theorems about similar triangles are:
Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. [2] Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to ...
(Holes are an important feature of Sierpiński's triangle.) Repeat step 2 with each of the smaller triangles (image 3 and so on). This infinite process is not dependent upon the starting shape being a triangle—it is just clearer that way. The first few steps starting, for example, from a square also tend towards a Sierpiński triangle.
The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180° if the geometry is elliptic. The defect of a triangle is the numerical value (180° − sum of the measures of the angles of the triangle). This result may also be stated as ...