Search results
Results from the WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]
For example, all depths of cut in lathe work must account for whether they apply to the radius (that is, per side) or to the diameter (that is, total). Similarly, in shaft-straightening operations, where calibrated amounts of bending force are applied laterally to the shaft, the "total" emphasis corresponds to a bend of half that magnitude.
The deflection must be considered for the purpose of the structure. When designing a steel frame to hold a glazed panel, one allows only minimal deflection to prevent fracture of the glass. The deflected shape of a beam can be represented by the moment diagram, integrated (twice, rotated and translated to enforce support conditions).
The coordinates of the points where these lines intersect the Mohr circle indicate the stress components acting on a plane in the physical space having the same inclination as the line. For instance, the line from the Pole to point C in the circle has the same inclination as the plane in the physical space where acts. This plane makes an angle ...
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
If the radius is zero, both azimuth and inclination are arbitrary.) The elevation is the signed angle from the x-y reference plane to the radial line segment OP, where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination.
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),