Search results
Results from the WOW.Com Content Network
The submultiple centistokes (cSt) is often used instead, 1 cSt = 1 mm 2 ·s −1 = 10 −6 m 2 ·s −1. 1 cSt is 1 cP divided by 1000 kg/m^3, close to the density of water. The kinematic viscosity of water at 20 °C is about 1 cSt.
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
The poise is often used with the metric prefix centi-because the viscosity of water at 20 °C (standard conditions for temperature and pressure) is almost exactly 1 centipoise. [3] A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
This measured kinematic viscosity is generally expressed in seconds of flow time which can be converted into centistokes (cSt) using a viscosity calculator. [ 2 ] Flow cups are manufactured using high grade aluminium alloy with stainless steel orifices (where indicated), flow cups are available with a range of UKAS / ISO 17025 certified ...
is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s −2); μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters);
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
The poiseuille (symbol Pl) has been proposed as a derived SI unit of dynamic viscosity, [1] named after the French physicist Jean Léonard Marie Poiseuille (1797–1869).. In practice the unit has never been widely accepted and most international standards bodies do not include the poiseuille in their list of units.