enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of physics mnemonics - Wikipedia

    en.wikipedia.org/wiki/List_of_physics_mnemonics

    The equation PV = nRT represents the ideal gas law, where P is the pressure of the gas, V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature. Gibbs's free energy formula

  3. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  4. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    These equations say respectively: a photon has zero rest mass; the photon energy is hν = hc|k| (k is the wave vector, c is speed of light); its electromagnetic momentum is ħk [ħ = h/(2π)]; the polarization μ = ±1 is the eigenvalue of the z-component of the photon spin.

  5. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the global profile". Each propagates at generally different speeds determined by the important function called the dispersion relation .

  6. Slowly varying envelope approximation - Wikipedia

    en.wikipedia.org/wiki/Slowly_varying_envelope...

    In physics, slowly varying envelope approximation [1] (SVEA, sometimes also called slowly varying asymmetric approximation or SVAA) is the assumption that the envelope of a forward-travelling wave pulse varies slowly in time and space compared to a period or wavelength.

  7. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  8. Euler–Heisenberg Lagrangian - Wikipedia

    en.wikipedia.org/wiki/Euler–Heisenberg_Lagrangian

    In physics, the Euler–Heisenberg Lagrangian describes the non-linear dynamics of electromagnetic fields in vacuum. It was first obtained by Werner Heisenberg and Hans Heinrich Euler [1] in 1936. By treating the vacuum as a medium, it predicts rates of quantum electrodynamics (QED) light interaction processes. [clarification needed]

  9. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    For a particle whose velocity is small relative to the speed of light (i.e., nonrelativistic), the total power that the particle radiates (when considered as a point charge) can be calculated by the Larmor formula: = (˙) = = = = where ˙ or is the proper acceleration, is the charge, and is the speed of light. [2]