Search results
Results from the WOW.Com Content Network
The significance of mitochondrial fission and fusion is distinct for nonproliferating neurons, which are unable to survive without mitochondrial fission. Such nonproliferating neurons cause two human diseases known as dominant optic atrophy and Charcot Marie Tooth disease type 2A, which are both caused by fusion defects. Though the importance ...
Mitochondrial fission is the process by which mitochondria divide or segregate into two separate mitochondrial organelles. Mitochondrial fission is counteracted by mitochondrial fusion, where two mitochondria fuse together to form a larger one. [1] Fusion can result in elongated mitochondrial networks.
The processes of fission and fusion oppose each other and allow the mitochondrial network to constantly remodel itself. [9] [8] If a stimulus induces a change in the balance of fission and fusion in a cell, it could significantly alter the mitochondrial network.
Mitochondrial dynamics, the balance between mitochondrial fusion and fission, is an important factor in pathologies associated with several disease conditions. [166] The hypothesis of mitochondrial binary fission has relied on the visualization by fluorescence microscopy and conventional transmission electron microscopy (TEM). The resolution of ...
In mammals MFN1 and MFN2 are essential for mitochondrial fusion. [7] In addition to the mitofusins, OPA1 regulates inner mitochondrial membrane fusion, and DRP1 is responsible for mitochondrial fission. [8] Mitofusin-2 (MFN2) is a mitochondrial membrane protein that plays a central role in regulating mitochondrial fusion and cell
Fission-fusion society – Social organization; Mitochondrial fusion – Merging of two or more mitochondria within a cell to form a single compartment; Mitosis – Process in which chromosomes are replicated and separated into two new identical nuclei
Mitochondria routinely undergo fission and fusion events that maintain a dynamic reticular network. Drp1 is a fundamental component of mitochondrial fission. [12] Indeed, Drp1 deficient neurons have large, strongly interconnected mitochondria [13] due to dysfunctional fission machinery.
Mitochondria and plastids contain their own ribosomes; these are more similar to those of bacteria (70S) than those of eukaryotes. [74] Proteins created by mitochondria and chloroplasts use N-formylmethionine as the initiating amino acid, as do proteins created by bacteria but not proteins created by eukaryotic nuclear genes or archaea. [75] [76]