enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In principle, the derivative of a function can be computed from the definition by considering the difference quotient and computing its limit. Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones.

  5. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The mean value theorem gives a relationship between values of the derivative and values of the original function. If f ( x ) is a real-valued function and a and b are numbers with a < b , then the mean value theorem says that under mild hypotheses, the slope between the two points ( a , f ( a )) and ( b , f ( b )) is equal to the slope of the ...

  7. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Geometrically, the derivative is the slope of the tangent line to the graph of f at a. The tangent line is a limit of secant lines just as the derivative is a limit of difference quotients. For this reason, the derivative is sometimes called the slope of the function f. [49]: 61–63

  9. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    The consequence of the first difference is the difference in the definition of the limit and differentiation. Directional limits and derivatives define the limit and differential along a 1D parametrized curve, reducing the problem to the 1D case. Further higher-dimensional objects can be constructed from these operators.