enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factor of safety - Wikipedia

    en.wikipedia.org/wiki/Factor_of_safety

    There are two definitions for the factor of safety (FoS): The ratio of a structure's absolute strength (structural capability) to actual applied load; this is a measure of the reliability of a particular design. This is a calculated value, and is sometimes referred to, for the sake of clarity, as a realized factor of safety.

  3. Slope stability - Wikipedia

    en.wikipedia.org/wiki/Slope_stability

    The smallest value of the safety factor will be taken as representing the global stability condition of the slope. Similarly, a slope can be locally stable if a safety factor larger than 1 is computed along any potential sliding surface running through a limited portion of the slope (for instance only within its toe).

  4. Slope stability analysis - Wikipedia

    en.wikipedia.org/wiki/Slope_stability_analysis

    The output of the analysis is a factor of safety, defined as the ratio of the shear strength (or, alternatively, an equivalent measure of shear resistance or capacity) to the shear stress (or other equivalent measure) required for equilibrium. If the value of factor of safety is less than 1.0, the slope is unstable.

  5. Bearing capacity - Wikipedia

    en.wikipedia.org/wiki/Bearing_capacity

    Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi's but included a shape factor s-q with the depth term Nq. He also included depth factors and inclination factors. [Note: Meyerhof re-evaluated N_q based on a different assumption from Terzaghi and found N_q = ( 1 + sin phi) exp (pi tan phi ) / (1 - sin phi).

  6. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Margin of Safety is the common method for design criteria. It is defined MS = P u /P − 1. For example, to achieve a factor of safety of 4, the allowable stress in an AISI 1018 steel component can be calculated to be = / = 440/4 = 110 MPa, or = 110×10 6 N/m 2. Such allowable stresses are also known as "design stresses" or "working stresses".

  7. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    Allowable bearing stress is the bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing stress is determined with regard to the maximum allowable settlement.

  8. Soil sloughing - Wikipedia

    en.wikipedia.org/wiki/Soil_sloughing

    According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5]

  9. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    The Mohr–Coulomb theory is named in honour of Charles-Augustin de Coulomb and Christian Otto Mohr.Coulomb's contribution was a 1776 essay entitled "Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l'architecture" .