enow.com Web Search

  1. Ads

    related to: how to draw eigenspaces in one way in math examples problems printable
  2. education.com has been visited by 100K+ users in the past month

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  3. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk.. In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    [9] [26] [42] By the definition of eigenvalues and eigenvectors, γ T (λ) ≥ 1 because every eigenvalue has at least one eigenvector. The eigenspaces of T always form a direct sum. As a consequence, eigenvectors of different eigenvalues are always linearly independent.

  6. Arnold's cat map - Wikipedia

    en.wikipedia.org/wiki/Arnold's_cat_map

    Since the eigenvectors have rationally independent components both the eigenspaces densely cover the torus. Arnold's cat map is a particularly well-known example of a hyperbolic toral automorphism, which is an automorphism of a torus given by a square unimodular matrix having no eigenvalues of absolute value 1. [3]

  7. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [1]Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis.

  8. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    As a direct consequence of simultaneous triangulizability, the eigenvalues of two commuting complex matrices A, B with their algebraic multiplicities (the multisets of roots of their characteristic polynomials) can be matched up as in such a way that the multiset of eigenvalues of any polynomial (,) in the two matrices is the multiset of the ...

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors. Not all matrices are diagonalizable; matrices that are not diagonalizable are called defective matrices. Consider the following matrix:

  1. Ads

    related to: how to draw eigenspaces in one way in math examples problems printable