Search results
Results from the WOW.Com Content Network
In free space, where ε = ε 0 and μ = μ 0 are constant everywhere, Maxwell's equations simplify considerably once the language of differential geometry and differential forms is used. The electric and magnetic fields are now jointly described by a 2-form F in a 4-dimensional spacetime manifold.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
Capability curve of an electrical generator describes the limits of the active and reactive power that the generator can provide. The curve represents a boundary of all operating points in the MW/MVAr plane; it is typically drawn with the real power on the horizontal axis, and, for the synchronous generator , resembles a letter D in shape, thus ...
In addition to the foundational principles and theorems, several analytical methods are integral to the study of electronics: [4] [5] Network analysis (electrical circuits): Essential for comprehending capacitor and inductor behavior under changing voltage inputs, particularly significant in fields such as signal processing, power electronics ...
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas, as symbolically it is similar to the letter 'Y').
In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance ( Z = R + jX ), where the imaginary part is reactance ( X ) and the real part is resistance ( R ).
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...