Search results
Results from the WOW.Com Content Network
Prim's algorithm starting at vertex A. In the third step, edges BD and AB both have weight 2, so BD is chosen arbitrarily. After that step, AB is no longer a candidate for addition to the tree because it links two nodes that are already in the tree.
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
The nodes are thus in a one-to-one correspondence with finite (possibly empty) sequences of positive numbers, which are countable and can be placed in order first by sum of entries, and then by lexicographic order within a given sum (only finitely many sequences sum to a given value, so all entries are reached—formally there are a finite ...
function lookupByPositionIndex(i) node ← head i ← i + 1 # don't count the head as a step for level from top to bottom do while i ≥ node.width[level] do # if next step is not too far i ← i - node.width[level] # subtract the current width node ← node.next[level] # traverse forward at the current level repeat repeat return node.value end ...
For a perfect tree, the number of nodes is + + + … + = +, where the last equality is from the geometric series sum. The number of leaf nodes in a perfect binary tree is = (+) / (where is the number of nodes in the tree) because = + (by using the above property) and the number of leaves is so = = = (+) /.
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Find the path of minimum total length between two given nodes and . We use the fact that, if R {\displaystyle R} is a node on the minimal path from P {\displaystyle P} to Q {\displaystyle Q} , knowledge of the latter implies the knowledge of the minimal path from P {\displaystyle P} to R {\displaystyle R} .