Search results
Results from the WOW.Com Content Network
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
Classical mechanics is a model of the physics of forces acting upon bodies; includes sub-fields to describe the behaviors of solids, gases, and fluids. It is often referred to as "Newtonian mechanics" after Isaac Newton and his laws of motion. It also includes the classical approach as given by Hamiltonian and Lagrange methods. It deals with ...
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c , and can accommodate massless particles .
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, =, or specifically, of which the velocity is comparable to the speed of light.
Similar is the situation in the case of charged-particle optics. Let us recall that in relativistic quantum mechanics too one has a similar problem of understanding the relativistic wave equations as the nonrelativistic approximation plus the relativistic correction terms in the quasi-relativistic regime.
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.