Search results
Results from the WOW.Com Content Network
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere .
Case 6: three angles given (AAA). The supplemental cosine rule may be used to give the sides a, b, and c but, to avoid ambiguities, the half-side formulae are preferred. Case 7: two angles and two opposite sides given (SSAA). Use Napier's analogies for a and A; or, use Case 3 (SSA) or case 5 (AAS).
A geodesic triangle is a region of a general two-dimensional surface enclosed by three sides that are straight relative to the surface . A curvilinear triangle is a shape with three curved sides, for instance, a circular triangle with circular-arc sides. (This article is about straight-sided triangles in Euclidean geometry, except where ...
Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles , i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: c = a 2 + b 2 − 2 a b cos γ ; {\displaystyle c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;}
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2]A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [] in 1746.
All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.