enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [ 2 ] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks.

  3. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    Torque forms part of the basic specification of an engine: the power output of an engine is expressed as its torque multiplied by the angular speed of the drive shaft. Internal-combustion engines produce useful torque only over a limited range of rotational speeds (typically from around 1,000–6,000 rpm for a small car).

  4. Newton-metre - Wikipedia

    en.wikipedia.org/wiki/Newton-metre

    The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...

  5. Mean effective pressure - Wikipedia

    en.wikipedia.org/wiki/Mean_effective_pressure

    Speed has dropped out of the equation, and the only variables are the torque and displacement volume. Since the range of maximum brake mean effective pressures for good engine designs is well established, we now have a displacement-independent measure of the torque-producing capacity of an engine design – a specific torque of sorts.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The work done W by an external agent which exerts a force F (at r) and torque τ on an object along a curved path C is: W = Δ T = ∫ C ( F ⋅ d r + τ ⋅ n d θ ) {\displaystyle W=\Delta T=\int _{C}\left(\mathbf {F} \cdot \mathrm {d} \mathbf {r} +{\boldsymbol {\tau }}\cdot \mathbf {n} \,{\mathrm {d} \theta }\right)}

  7. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]

  8. Swing equation - Wikipedia

    en.wikipedia.org/wiki/Swing_equation

    is the mechanical torque supplied by the prime mover in N-m; is the electrical torque output of the alternator in N-m; Neglecting losses, the difference between the mechanical and electrical torque gives the net accelerating torque . In the steady state, the electrical torque is equal to the mechanical torque and hence the accelerating power is ...

  9. Self aligning torque - Wikipedia

    en.wikipedia.org/wiki/Self_aligning_torque

    Self aligning torque , slip angle , and camber angle are also shown. Self aligning torque ( SAT ), also known as aligning torque or aligning moment ( Mz , moment about the z direction ), is the torque that a tire creates as it rolls along, which tends to steer it, i.e. rotate it around its vertical axis.