enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phosphodiester bond - Wikipedia

    en.wikipedia.org/wiki/Phosphodiester_bond

    Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with reference to this kind of bond in DNA and RNA chains). [3] The involved saccharide groups are deoxyribose in DNA and ribose in RNA.

  3. Phosphodiesterase - Wikipedia

    en.wikipedia.org/wiki/Phosphodiesterase

    However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases (which all break the phosphodiester backbone of DNA or RNA), as well as numerous less-well-characterized small-molecule phosphodiesterases.

  4. Deoxyribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Deoxyribonucleotide

    When deoxyribonucleotides polymerize to form DNA, the phosphate group from one nucleotide will bond to the 3' carbon on another nucleotide, forming a phosphodiester bond via dehydration synthesis. New nucleotides are always added to the 3' carbon of the last nucleotide, so synthesis always proceeds from 5' to 3'.

  5. RNA hydrolysis - Wikipedia

    en.wikipedia.org/wiki/RNA_hydrolysis

    RNA hydrolysis occurs when the deprotonated 2’ OH of the ribose, acting as a nucleophile, attacks the adjacent phosphorus in the phosphodiester bond of the sugar-phosphate backbone of the RNA. [1] There is a transition state (shown above), where the phosphorus is bonded to five oxygen atoms. [ 2 ]

  6. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    The backbone of the DNA strand is made from alternating phosphate and sugar groups. [14] The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon) sugar. The sugars are joined by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings.

  7. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    Phosphodiester bonds are formed between ribonucleotides by the enzyme RNA polymerase. The RNA chain is synthesized from the 5' end to the 3' end as the 3'-hydroxyl group of the last ribonucleotide in the chain acts as a nucleophile and launches a hydrophilic attack on the 5'-triphosphate of the incoming ribonucleotide, releasing pyrophosphate ...

  8. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.

  9. Nuclease - Wikipedia

    en.wikipedia.org/wiki/Nuclease

    Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').. In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids.