enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]

  3. Steiner system - Wikipedia

    en.wikipedia.org/wiki/Steiner_system

    The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The Fano plane is the projective plane with the fewest points and lines. The smallest 2-dimensional projective geometry (that with the fewest points) is the Fano plane, which has 3 points on every line, with 7 points and 7 lines in all, having the following collinearities:

  5. PG (3,2) - Wikipedia

    en.wikipedia.org/wiki/PG(3,2)

    Discard duplicate planes to obtain a set of 30 distinct Fano planes. Pick any of the 30, and pick the 14 others that have exactly one line in common with the first, not 0 or 3. The incidence structure between the 1 + 14 = 15 Fano planes and the 35 triplets they mutually cover induces a PG(3, 2) .

  6. PSL (2,7) - Wikipedia

    en.wikipedia.org/wiki/PSL(2,7)

    It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A 5 with 60 elements, isomorphic to PSL(2, 5) .

  7. Fano variety - Wikipedia

    en.wikipedia.org/wiki/Fano_variety

    The adjunction formula implies that K D = (K X + D)| D = (−(n+1)H + deg(D)H)| D, where H is the class of a hyperplane. The hypersurface D is therefore Fano if and only if deg(D) < n+1. More generally, a smooth complete intersection of hypersurfaces in n-dimensional projective space is Fano if and only if the sum of their degrees is at most n.

  8. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]

  9. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    The Fano plane. This particular projective plane is sometimes called the Fano plane. If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to