enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luminous flux - Wikipedia

    en.wikipedia.org/wiki/Luminous_flux

    In photometry, luminous flux or luminous power [citation needed] is the measure of the perceived power of light. It differs from radiant flux , the measure of the total power of electromagnetic radiation (including infrared , ultraviolet , and visible light), in that luminous flux is adjusted to reflect the varying sensitivity of the human eye ...

  3. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    Hence, units of electric flux are, in the MKS system, newtons per coulomb times meters squared, or N m 2 /C. (Electric flux density is the electric flux per unit area, and is a measure of strength of the normal component of the electric field averaged over the area of integration. Its units are N/C, the same as the electric field in MKS units.)

  4. Jansky - Wikipedia

    en.wikipedia.org/wiki/Jansky

    The flux to which the jansky refers can be in any form of radiant energy. It was created for and is still most frequently used in reference to electromagnetic energy, especially in the context of radio astronomy. The brightest astronomical radio sources have flux densities of the order of 1–100

  5. Radiative flux - Wikipedia

    en.wikipedia.org/wiki/Radiative_flux

    In geophysics, shortwave flux is a result of specular and diffuse reflection of incident shortwave radiation by the underlying surface. [3] This shortwave radiation, as solar radiation, can have a profound impact on certain biophysical processes of vegetation, such as canopy photosynthesis and land surface energy budgets, by being absorbed into the soil and canopies. [4]

  6. AB magnitude - Wikipedia

    en.wikipedia.org/wiki/AB_magnitude

    The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).

  7. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  8. Radiant exposure - Wikipedia

    en.wikipedia.org/wiki/Radiant_exposure

    Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm −1. Φ e,λ [nb 4] watt per metre W/m M⋅L⋅T −3: Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral ...

  9. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    A flow chart describing the relationship of various physical quantities, including radiant flux and exitance. In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency ...