enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin6 x + 1 8 sin ⁡ 4 x − 1 8 sin2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  4. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin ⁡ x {\displaystyle \sin x} is any trigonometric function, and cos ⁡ x {\displaystyle \cos x} is its derivative,

  5. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Plot of Ci(x) for 0 < x ≤ 8π. The different cosine integral definitions are ⁡ ⁡ ⁡ .. Cin is an even, entire function.For that reason, some texts define Cin as the primary function, and derive Ci in terms of Cin .

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula ...

  7. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions

  8. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    Euler integral of the second kind: the Gamma function: Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt} for Re( z ) > 0 . If we make the following substitution inside the Beta function: { t = sin 2 ⁡ u 1 − t = cos 2 ⁡ u d t = 2 sin ⁡ u cos ⁡ u d u , {\displaystyle \quad \left ...

  9. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.